Диодный мост — описание работы, как подключить и проверить

Опубликовано: 2020-03-28 03:02:59



Содержание

Как подключить диодный мост и зачем он вообще нужен? Какие типы бывают и как выбрать? Как правильно замерить напряжение при помощи мультиметра? Где его применяют?

Что такое диодный мост

Работа и функционал двухполупериодного мостового выпрямителя довольно просты. Схемы и формы сигналов, которые мы привели ниже, помогут вам лучше понять работу мостового выпрямителя. На принципиальной схеме 4 диода расположены в виде моста. Вторичная обмотка трансформатора подключена к двум диаметрально противоположным точкам моста в точках A и C. Сопротивление нагрузки R L подключено к мосту через точки B и D.

Функционирование

Общая схема питания

Форма волны переменного тока не постоянна, зависит от времени. Когда оно достигает положительного пикового значения, ток имеет тенденцию к падению; то же самое будет следовать за отрицательным значением, после того как снова достигнет нуля, оно вернется к нулевым значениям.

Теперь рассмотрим работу выпрямителя, применив AC в качестве входа. Для положительной половины цикла диод работает в режиме прямого смещения. Следовательно, путь установлен для движения носителей заряда.

Как только отрицательная часть цикла приложена к диоду, он блокирует значение тока, потому что движением неосновных носителей заряда в нем можно пренебречь. Просто можно определить работу диода как проводящую в прямом смещении и блокирующую в обратном смещении к потоку тока.

Следовательно, течение тока очевидно во время положительной части цикла, приложенного к диоду. Полученный выход должен быть преобразован из переменного тока в постоянный. Таким образом, основной диод функционирует как выпрямитель.

Как работает и для чего нужен диодный мост

Положительный полупериод

Схема работы диодов в положительном полупериоде

Во время отрицательного полупериода питания диоды D3 и D4 работают последовательно, но диоды D1 и D2 переключаются в положение «ВЫКЛ», поскольку теперь они имеют обратное смещение. Ток, протекающий через нагрузку, имеет то же направление, что и раньше.

Отрицательный полупериод

Схема работы диодов в отрицательным полупериоде

Поскольку ток, протекающий через нагрузку, является однонаправленным, то и напряжение, развиваемое на нагрузке, также является однонаправленным так же, как и для двухдиодных выпрямителей предыдущих двух диодов, поэтому среднее напряжение постоянного тока на нагрузке составляет 0,637 В макс.

Кремниевые и германиевые диоды

Ученые и инженеры обычно используют кремний чаще, чем германий, при создании диодов. Кремниевые pn-переходы работают более эффективно при более высоких температурах, чем германиевые. Кремниевые полупроводники позволяют электрическому току течь легче и могут производиться с меньшими затратами.

Эти диоды используют преимущество pn-перехода для преобразования переменного тока в постоянный как своего рода электрический «переключатель», который позволяет току протекать в прямом или обратном направлении в зависимости от ориентации pn-перехода. Диоды с прямым смещением позволяют току течь, а диоды с обратным смещением блокируют его. Это то, что заставляет кремниевые диоды иметь прямое напряжение около 0,7 вольта, так что они пропускают ток, только если он больше, чем вольт. Для германиевых диодов прямое напряжение составляет 0,3 вольта.

Диод

Анодный вывод батареи, электрода или другого источника напряжения, в котором происходит окисление в цепи, подает отверстия в катод диода при формировании pn-перехода. Напротив, катод источника напряжения, где происходит восстановление, обеспечивает электроны, которые отправляются на анод диода.

Особенности конструкции мостового выпрямителя

Есть несколько моментов, которые необходимо учитывать при использовании мостового выпрямителя для обеспечения выхода постоянного тока от входа переменного тока:

  • Падение напряжения: не следует забывать, что ток, протекающий в мостовом выпрямителе, будет проходить через два диода. В результате выходное напряжение будет уменьшено на эту величину. Поскольку большинство мостовых выпрямителей используют кремниевые диоды, это падение составит минимум 1,2 В и будет увеличиваться по мере увеличения тока. Соответственно, максимальное выходное напряжение, которое может быть достигнуто, составляет минимум 1,2 В ниже пикового напряжения на входе переменного тока.
  • Рассчитайте тепло, рассеиваемое в выпрямителе. Диоды будут снижать напряжение минимум на 1,2 В (при условии, что стандартный кремниевый диод) будет увеличиваться при увеличении тока. Это происходит из-за стандартного падения напряжения на диоде, а также сопротивления в диоде. Стоит ознакомиться с паспортом на диоды мостового выпрямителя, чтобы увидеть падение напряжения для предполагаемого уровня тока. Падение напряжения и ток, проходящий через выпрямитель, вызовут нагрев, который необходимо будет рассеивать. В некоторых случаях это может быть легко рассеяно воздушным охлаждением, но в других случаях мостовой выпрямитель может потребоваться прикрутить к радиатору.
  • Пиковое обратное напряжение: очень важно обеспечить, чтобы пиковое обратное напряжение мостового выпрямителя или отдельных диодов не превышалось, иначе диоды могут выйти из строя. Номинал PIV для диодов в мостовом выпрямителе меньше, чем требуется для конфигурации с двумя диодами, используемой с трансформатором с центральным отводом. Если отбрасыванием диодов пренебрегают, для мостового выпрямителя требуются диоды с половиной номинальной PIV от диодов в выпрямителе с центральным отводом для того же выходного напряжения. Это может быть еще одним преимуществом использования этой конфигурации.

Мостовые выпрямители являются идеальным способом обеспечения выпрямленного выхода с чередующегося входа. Мостовой выпрямитель обеспечивает двухполупериодный выпрямленный выходной сигнал, что позволяет добиться большей производительности.

Синхронные выпрямители также известны как активные, и они используются для повышения эффективности цепей диодных выпрямителей.

Полупроводниковые диоды заменены активными переключающими элементами: транзисторами, которые могут быть силовыми МОП-транзисторами или силовыми биполярными транзисторами, которые включаются и выключаются в требуемое время для обеспечения возможности выпрямления.

Поскольку переключение, очевидно, должно происходить синхронно с поступающим сигналом, эти выпрямители часто называют синхронными или иногда активными.

Синхронные выпрямители

Потребность в синхронных или активных выпрямителях возникает из-за постоянного падения, которое происходит через диод, когда он проводит.

Хотя напряжение включения для кремниевого диода – тип, наиболее часто используемый для выпрямителей, составляет около 0,6 вольта, фактическое падение напряжения на диоде может возрасти до 1 вольта при его номинальном токе.

Использование диодов Шоттки может уменьшить падение напряжения, но это все еще может быть проблемой, особенно когда требуются самые высокие уровни эффективности. Синхронные выпрямители способны обеспечить улучшения даже по сравнению с диодными выпрямителями Шоттки.

Вопрос эффективности становится еще острее при использовании низковольтных преобразователей. С уровнями напряжения всего несколько вольт, а также с возможностью высоких уровней тока падения напряжения, вызванные диодами, становятся неприемлемыми, и методы синхронного выпрямителя становятся существенными.

Основы синхронного выпрямления

В типичном диодном выпрямителе диод включается, когда он смещен в прямом направлении, и выключается, когда смещается в обратном направлении. Можно управлять активным элементом, чтобы эффект был таким же. Преимущество активного выпрямителя состоит в том, что сопротивление проводимости и падение напряжения намного меньше, чем у диодов.

Поскольку переключение активного элемента должно быть правильно рассчитано, оно фактически синхронизировано с выпрямляемым сигналом. Именно по этой причине эти выпрямители известны как синхронные.

Часто мощные полевые МОП-транзисторы являются идеальными активными элементами для синхронного выпрямления, и они имеют очень низкое сопротивление, при этом RDS может составлять всего несколько десятков мОм или менее. Падение напряжения на этом уровне сопротивления, вероятно, будет намного меньше, чем на диоде.

Недостатком синхронных или активных выпрямителей является то, что им требуется схема управления для обеспечения синхронного включения устройств, то есть в нужное время. Схема, необходимая для управления синхронным выпрямителем, обычно включает в себя детекторы уровня напряжения и схему возбуждения для активных устройств.

Одним из ключевых вопросов для схемы управления является обеспечение того, чтобы два устройства на противоположных ножках выпрямителя не включались вместе, иначе короткое замыкание будет представлено на входе. Включение и выключение устройств обычно контролируется, чтобы гарантировать, что даже в точке, где одно включается, а другое выключается, имеется короткий промежуток, чтобы предотвратить одновременное включение обоих устройств.

Активное или синхронное выпрямление часто используется в преобразователях переменного тока в постоянный, где ключевым вопросом является эффективность. Использование синхронного выпрямителя позволяет минимизировать потери мощности и повысить уровни эффективности, но за счет дополнительной сложности.

Полуволновой выпрямитель

Полуволновые выпрямители соединены в цепи и переключаются между прямым и обратным смещением на основе положительного или отрицательного полупериода входной волны переменного тока. Он посылает этот сигнал на резистор нагрузки, так что ток, протекающий через резистор, пропорционален напряжению. Это происходит из-за закона Ома, который представляет напряжение V как произведение тока I и сопротивления R в V = IR.

Вы можете измерить напряжение на нагрузочном резисторе как напряжение питания Vs, которое равно выходному напряжению постоянного тока Vout. Сопротивление, связанное с этим напряжением, также зависит от диода самой схемы. Затем схема выпрямителя переключается на обратное смещение, в котором она принимает отрицательный полупериод входного сигнала переменного тока. В этом случае ток не протекает через диод или цепь, а выходное напряжение падает до 0. Выходной ток является однонаправленным.

Двухполупериодная выпрямительная схема

Двухполупериодная выпрямительная схема

Напротив, двухполупериодные выпрямители используют полный цикл (с положительными и отрицательными полупериодами) входного сигнала переменного тока. Четыре диода в двухполупериодной схеме выпрямителя расположены таким образом, что, когда входной сигнал переменного тока положительный, ток течет через диод от D1 к сопротивлению нагрузки и обратно к источнику переменного тока через D2. Когда сигнал переменного тока отрицателен, вместо этого ток проходит путь D3 -load- D4. Сопротивление нагрузки также выводит напряжение постоянного тока от двухполупериодного выпрямителя.

Как меняется напряжение после диодного моста

Виды диодных мостов

Большинство электронных приборов в вашем доме используют переменный ток, но некоторые устройства, такие как ноутбуки, перед использованием преобразуют этот ток в постоянный. Большинство ноутбуков используют тип импульсного источника питания (SMPS), который позволяет выходному напряжению постоянного тока больше мощности для размера, стоимости и веса адаптера.

Диодные мосты работают с использованием выпрямителя, генератора и фильтра, которые управляют широтно-импульсной модуляцией (метод снижения мощности электрического сигнала), напряжением и током. Генератор представляет собой источник переменного сигнала, из которого вы можете определить амплитуду тока и направление его протекания. Адаптер переменного тока ноутбука затем использует его для подключения к источнику переменного тока и преобразует высокое напряжение переменного тока в низкое напряжение постоянного тока, форму, которую он может использовать для питания самого себя во время зарядки.

Некоторые выпрямительные системы также используют сглаживающую цепь или конденсатор, который позволяет им выводить постоянное напряжение, а не то, которое изменяется во времени. Электролитический конденсатор сглаживающих конденсаторов может достигать емкостей от 10 до тысяч микрофарад (мкФ). Большая емкость необходима для большего входного напряжения.

Другие выпрямители используют трансформаторы, которые изменяют напряжение, используя четырехслойные полупроводники, известные как тиристоры, наряду с диодами. Кремний – управляемый выпрямитель, другое название тиристора, использует катод и анод отделены друг от друга ворот и ее четырех слоев, чтобы создать два р — п переходов, расположенных один поверх другого.

Как подключить диодный мост

Для того чтобы сделать качественный диодный мост, нужно обеспечивать преобразование как плюсовой, так и минусовой части сигнала. Если диоды подсоединить по схеме Гретца, то в каждый период волны ток сможет проходить только через два элемента. Другими словами, устройство будет по очереди трансформировать каждую половину волны.

Как проверить диодный мост мультиметром

Нужно включить мультиметр в режим «Мониторинга диода». Обычно он совмещается с режимом «прозвона» и маркируется на панели аппарата значком диода.

Чтобы 100% убедиться в работоспособности диодов 1 и 2, нужно проверить их при реверсном включении. Для этого к отрицательному выводу моста («) нужно подключить минусовой, чёрный щуп измерителя, а красный плюсовой щуп по очереди подсоединить к выводам, маркируется символом «~».

В обоих случаях на экране будет показана единица, что говорит о высокой степени сопротивления P-N перехода. В таком включении диоды ток не пропускают, все в порядке.

Как рассчитать и подобрать диодный мост по мощности

Максимальное пульсирующее напряжение, присутствующее в цепи двухполупериодного выпрямителя, определяется не только значением сглаживающего конденсатора, но и частотой и током нагрузки и рассчитывается как:

Напряжение пульсации моста выпрямителя

Формула напряжения пульсаций

Где: I – ток нагрузки постоянного тока в амперах, ƒ – частота пульсации или удвоенная входная частота в герцах, а C – емкость в Фарадах.

Основными преимуществами двухполупериодного мостового выпрямителя является то, что он имеет меньшее значение пульсации переменного тока для данной нагрузки и меньший резервуар или сглаживающий конденсатор, чем эквивалентный полуволновой выпрямитель. Следовательно, основная частота пульсирующего напряжения в два раза больше частоты переменного тока (100 Гц), где для полуволнового выпрямителя она точно равна частоте питания (50 Гц).

Величина пульсирующего напряжения, которое накладывается поверх напряжения питания постоянного тока диодами, может быть практически устранена путем добавления значительно улучшенного π-фильтра (pi-фильтра) к выходным клеммам мостового выпрямителя. Этот тип фильтра нижних частот состоит из двух сглаживающих конденсаторов, как правило, одного и того же значения и дросселя или индуктивности через них, чтобы ввести путь с высоким полным сопротивлением в переменный компонент пульсации.

Мостовой выпрямитель

Другая, более практичная и более дешевая альтернатива – использовать готовый трехполюсный ИС-регулятор напряжения, например, LM78xx (где xx обозначает номинальное выходное напряжение) для положительного выходного напряжения или его обратный эквивалент, LM79xx для отрицательного выходное напряжение, которое может снизить пульсации более чем на 70 дБ (таблица данных), обеспечивая постоянный выходной ток более 1 ампера.

Многие схемы с этой технологией построены с мостовым выпрямителем. Мостовые выпрямители преобразуют переменный ток в постоянный, используя свою систему диодов, изготовленных из полупроводникового материала, либо полуволновым методом, который выпрямляет одно направление сигнала переменного тока, либо полноволновым методом, который выпрямляет оба направления входного переменного тока.

Диодный мост GBL10

Полупроводники – это материалы, которые пропускают ток, потому что они сделаны из металлов, таких как галлий, или металлоидов, таких как кремний, которые загрязнены такими материалами, как фосфор, в качестве средства контроля тока. Вы можете использовать мостовой выпрямитель для различных применений для широкого диапазона токов.

Мостовые выпрямители также имеют преимущество в том, что они выдают больше напряжения и мощности, чем другие выпрямители. Несмотря на эти преимущества, мостовые выпрямители страдают от необходимости использовать четыре диода с дополнительными диодами по сравнению с другими выпрямителями, вызывая падение напряжения, которое уменьшает выходное напряжение.

Какие бывают диодные мосты

Типы диодных мостов

Во время каждого полупериода ток протекает через два диода вместо одного, поэтому амплитуда выходного напряжения на два падения напряжения (2 * 0,7 = 1,4 В) меньше, чем амплитуда входного V MAX. Частота пульсации теперь в два раза больше частоты источника питания (например, 100 Гц для источника 50 Гц или 120 Гц для источника 60 Гц.)

Хотя мы можем использовать четыре отдельных силовых диода для изготовления двухполупериодного мостового выпрямителя, готовые компоненты мостового выпрямителя доступны «в продаже» в диапазоне различных напряжений и токов, которые могут быть припаяны непосредственно к печатной плате. Или могут быть подключены с помощью лопастных разъемов.

Сглаживающий конденсатор

Сглаживающий выпрямитель

Однофазный полуволновой выпрямитель генерирует выходную волну каждую половину цикла и что нецелесообразно использовать этот тип схемы для получения постоянного источника постоянного тока. Однако двухполупериодный мостовой выпрямитель дает нам большее среднее значение постоянного тока (0,637 Вмакс) с меньшей наложенной пульсацией, в то время как выходной сигнал в два раза больше частоты входного источника питания.

Мы можем улучшить среднюю выходную мощность постоянного тока выпрямителя, одновременно уменьшая изменение переменного тока выпрямленного выходного сигнала, используя сглаживающие конденсаторы для фильтрации формы выходного сигнала. Сглаживающие или емкостные конденсаторы, подключенные параллельно с нагрузкой на выходе двухполупериодной мостовой выпрямительной схемы, увеличивают средний выходной уровень постоянного тока еще выше, поскольку конденсатор действует как запоминающее устройство, как показано ниже.

Двухполупериодный аппарат со сглаживающим конденсатором

Двухполупериодный аппарат со сглаживающим конденсатором

Сглаживающий конденсатор преобразует двухполупериодный волнистый выход выпрямителя в более плавное выходное напряжение постоянного тока.

Сглаживающий конденсатор 5 мкФ

Синий график на картинке показывает результат использования сглаживающего конденсатора 5 мкФ на выходе выпрямителя. Ранее напряжение нагрузки следовало за выпрямленной формой выходного сигнала до нуля вольт.

Цветовая маркировка полупроводниковых диодов

Тип диода Цвет кольца (к.), точки (т.)
Со стороны катода (в середине корпуса) Со стороны анода
Д2Б Д2В Д2Д Д2Е Д2Ж Д2И Белая т. оранжевая т. голубая т. зеленая т. черная т. красная т.
Д9Б Д9В Д9Г Д9Д Д9Е Д9Ж Д9И Д9К Д9Л Красная т. оранжевая т. желтая т. белая т. голубая т. зеленая и голубая т. две желтые т. две белые т. две зеленые т. Красная т.
КД102А КД102Б Желтая т. оранжевая т. Зеленая т. синяя т.
КД103А КД103Б Синяя т. желтая т.
КД105А КД105Б КД105В КД105Г Белая или желтая полоса на торце корпуса Зеленая т. красная т. белая или желтая т.
КД106 КД209А* КД209Б КД209В КД209Г Метка черного, зеленого или желтого цвета Белая т. черная т. зеленая т.

* Цвет корпуса коричневый.

Тип диода Цвет кольца (к.), точки (т.)
Со стороны катода (в середине корпуса) Со стороны анода
КД226А КД226Б КД226В КД226Г КД226Д КД226Е Оранжевое к. красное к. зеленое к. желтое к. белое к. голубое к.
КД243А КД243Б КД243В КД243Г КД243Д КД243Е КД243Ж Фиолетовое к. оранжевое к. красное к. зеленое к. желтое к. белое к. голубое к.
КД510А Одно широкое и два узких зеленых к.
2Д510А Одно широкое и одно узкое зеленое к.
КД521А 1 шир. + 2 узкие
КД521Б Синие полосы
КД521В Желтые полосы
КД522А Одно узкое черное к. Одно широкое
КД522Б Два узких черных к. Черное кольцо
КД522В Три узких черных к. +тип диода

Ситуация приводит к разрядке конденсатора примерно до 3,6 В, в этом примере, поддерживая напряжение на нагрузочном резисторе, пока конденсатор не перезарядится еще раз на следующем положительном наклоне импульса постоянного тока. Другими словами, конденсатор успевает разрядиться лишь на короткое время, прежде чем следующий импульс постоянного тока снова зарядит его до пикового значения. Таким образом, напряжение постоянного тока, приложенное к нагрузочному резистору, падает лишь на небольшую величину. Но мы можем улучшить это, увеличив значение сглаживающего конденсатора, как показано на рисунке.

Сглаживающий конденсатор 50 мкФ

Здесь мы увеличили значение сглаживающего конденсатора в десять раз с 5 мкФ до 50 мкФ, что уменьшило пульсацию, увеличив минимальное напряжение разряда с предыдущих 3,6 вольта до 7,9 вольта. Используя схему симулятора Partsim, была выбрана нагрузка 1 кОм для получения этих значений, но, поскольку сопротивление нагрузки уменьшается, ток нагрузки увеличивается, что приводит к более быстрой разрядке конденсатора между импульсами зарядки.

Эффект питания тяжелой нагрузки одним сглаживающим или емкостным конденсатором может быть уменьшен за счет использования более крупного конденсатора, который накапливает больше энергии и меньше разряжается между зарядными импульсами. Как правило, для цепей питания постоянного тока сглаживающий конденсатор представляет собой алюминиевый электролитический тип, который имеет значение емкости 100 мкФ или более с повторяющимися импульсами напряжения постоянного тока от выпрямителя, заряжающего конденсатор до пикового напряжения.

Диодный мост KBU6J

Слишком низкое значение емкости, и конденсатор мало влияет на форму выходного сигнала. Но если сглаживающий конденсатор достаточно большой (можно использовать параллельные конденсаторы) и ток нагрузки не слишком велик, выходное напряжение будет почти таким же плавным, как чистый постоянный ток. Как общее практическое правило, мы рассчитываем иметь пульсирующее напряжение от пика до пика менее 100 мВ.

Как обозначается диодный мост на схеме

Диодный мост на схеме

Схема другого типа, которая производит ту же форму выходного сигнала, что и схема двухполупериодного выпрямителя, описанная выше.

Основным преимуществом этой мостовой схемы является то, что для нее не требуется специальный трансформатор с центральным отводом, что снижает его размеры и стоимость. Одна вторичная обмотка подключена к одной стороне сети диодного моста, а нагрузка – к другой стороне, как показано ниже.

Диодный мостовой выпрямитель

Диодный мостовой выпрямитель

Четыре диода, обозначенные от D 1 до D 4, расположены в виде «последовательных пар», и только два диода проводят ток в течение каждого полупериода. В течение положительного полупериода питания диоды D1 и D2 работают последовательно, в то время как диоды D3 и D4 смещены в обратном направлении, и ток протекает через нагрузку, как показано ниже.

Где применяется диодный мост

Типы выпрямительных систем различаются в зависимости от приложений, в которых вам нужно изменить напряжение или ток. В дополнение к уже рассмотренным применениям выпрямители находят применение в паяльном оборудовании, электросварке, радиосигналах AM, импульсных генераторах, умножителях напряжения и цепях питания.

Применение диодного моста

Паяльники, которые используются для соединения частей электрических цепей, используют полуволновые выпрямители для одного направления входного переменного тока. Методы электросварки, в которых используются мостовые выпрямительные схемы, являются идеальными кандидатами для обеспечения постоянного поляризованного напряжения питания.

AM-радио, которое модулирует амплитуду, может использовать полуволновые выпрямители для обнаружения изменений во входном электрическом сигнале. Схемы генерации импульсов, которые генерируют прямоугольные импульсы для цифровых схем, используют полуволновые выпрямители для изменения входного сигнала.

Выпрямители в цепях электропитания преобразуют переменный ток в постоянный от разных источников питания. Это полезно, поскольку постоянный ток обычно отправляется на большие расстояния, прежде чем он преобразуется в переменный ток для бытовых электрических и электронных устройств. Эти технологии широко используют мостовой выпрямитель, который может справиться с изменением напряжения.

Читайте также. Похожие записи.
  • Что такое потенциометр, принцип работы, схема и типы
  • Что такое транзистор Дарлингтона, конфигурации и применение
  • Двигатель постоянного тока
  • Что такое варистор, применение, принцип работы и схемы
  • Линейный соленоид
  • Индуктор

Поделитесь статьей:

comments powered by HyperComments

Related posts